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Abstract. Boolean games offer a compact alternative to normal-form games, by
encoding the goal of each agent as a propositional formula. In this paper, we
show how this framework can be naturally extended to model situations in which
agents are uncertain about other agents’ goals. We first use uncertainty measures
from possibility theory to semantically define (solution concepts to) Boolean
games with incomplete information. Then we present a syntactic characteriza-
tion of these semantics, which can readily be implemented, and we characterize
the computational complexity.

1 Introduction

Boolean games (BGs) are games in which the agents’ goals are formalized using propo-
sitional formulas [12]. The atomic propositional variables occurring in these goals are
called the action variables, since each of them is controlled by one agent. Originally,
BGs were introduced with binary preferences, i.e. the goal of an agent is a single propo-
sitional formula and the utility of an agent is 1 if its goal is satisfied and 0 otherwise [12].
Various suggestions have been made in the literature to overcome this limitation of ex-
pressiveness. One approach is the introduction of costs on the action variables [10].
Another suggestion is a generalization of the BG framework towards compact prefer-
ence relations on the set of outcomes, e.g. by using a prioritized goal base per agent [4].
Recently, the limitation has also been overcome by replacing the classical two-valued
logic for representing the goals by many-valued Łukasiewicz logic [13]. This extension
allows many degrees to which a goal can be satisfied, as opposed to the sole distinction
between satisfaction or non-satisfaction. In this paper, we consider a variant of BGs
with prioritized goal bases. An agent is most eager to achieve the goal with the highest
priority. If this goal cannot be achieved, the agent will settle with the satisfaction of the
goal with the second-highest priority, etc.

Example 1. Bob and Alice are going out. Alice – agent 1 – controls action variable a,
and Bob – agent 2 – controls b. Setting their action variable to true corresponds to at-
tending a sports game; setting it to false corresponds to going to the theatre. Bob and



Alice’s first priority is to go out together. If they do not go out together, Bob prefers
a sports game, whereas Alice prefers the theatre. This can be represented with a prefer-
ence ordering over the outcomes per agent or with a pay-off matrix:

(a, b) =1 (¬a,¬b) >1 (¬a, b) >1 (a,¬b)
(a, b) =2 (¬a,¬b) >2 (¬a, b) >2 (a,¬b)

Bob \ Alice a ¬a
b (2, 2) (1, 1)
¬b (0, 0) (2, 2)

There are 2 pure Nash equilibria – outcomes such that no one has an incentive to devi-
ate: attending a sports game together and going to the theatre together.

Our aim in this paper is to propose an extension to the BG framework in which
agents can be uncertain about other agents’ goals. An important concern is that the
resulting framework should still enable a compact and intuitive representation of games,
as these are the main strengths of BGs. We therefore introduce a compact syntactic
framework, which we prove to correspond to an intuitive semantic framework. Using
our extended BG framework, we aim to determine rational behaviour for agents which
are uncertain about the other agents’ goals.

Although uncertainty in game theory has been studied extensively (see e.g. [14]),
the literature on BGs with incomplete information is currently limited. Uncertainty can
be either epistemic or stochastic of nature. The former is caused by incomplete knowl-
edge about the game, whereas the latter is e.g. caused by actions which do not always
have the same effect on the outcome. This paper concerns epistemic uncertainty. To the
best of our knowledge, the existing work on BGs with uncertainty also falls in the cat-
egory of epistemic uncertainty. However, in contrast to our work, the uncertainty is not
related to the goals. Grant et al. [11] incorporate uncertainty in the BG framework by
introducing a set of environment variables outside the control of any agent. Each agent
has some (possibly incorrect) belief about the value of the environment variables. The
focus of [11] is to manipulate the BGs by making announcements about the true value
of some environment variables, in order to create a stable solution if there were none
without the announcements. Ågotnes et al. [2] address uncertainty in BGs by extending
the framework of BGs with a set of observable action variables for every agent, i.e.
every agent can only observe the values assigned to a particular subset of action vari-
ables. As a result, agents are not able to distinguish between some strategy profiles, if
these profiles only differ in action variables that are not observable to that agent. Three
notions of verifiable equilibria are investigated, capturing respectively strategy profiles
for which all agents know that they might be pure Nash equilibria (PNEs), strategy pro-
files for which all agents know that they are PNEs and strategy profiles for which it is
common knowledge that they are PNEs, i.e. all agents know that they are PNEs and
all agents know that all agents know that they are PNEs etc. The same authors have
extended this framework to epistemic BGs [1], in which the logical language for de-
scribing goals is broadened to a multi-agent epistemic modal logic. Note, however, that
agents are still completely aware of each others’ goals in this framework.

In this paper, we study BGs with incomplete information, considering agents which
have their own beliefs about the goals of other agents. Although probability theory is
often used to model uncertainty in game theory [14], a possibilistic logic approach pro-
vides a simple and elegant mechanism for modeling partial ignorance, which is closely
related to the notion of epistemic entrenchment [8]. Being based on ranking formulas



(at the syntactic level) or possible worlds (at the semantic level), possibilistic logic has
the advantage of staying close to classical logic. As a result, we will be able to introduce
methods for solving possibilistic BGs that are entirely similar to methods for solving
standard BGs.

Example 2. Consider again the scenario of Example 1, but assume that Bob and Alice
are unaware of each other’s goals. If Bob’s knowledge of Alice’s goal is correct, but
Alice thinks that Bob does not want to join her to the theatre, then, based on their
beliefs, attending a sports game together is a ‘better’ solution than going to the theatre
together. Indeed, Alice believes that Bob will not agree to go to the theatre together, but
they both believe that the other will agree to attend a sports game together.

The paper is structured as follows. First, we briefly recall possibility theory and
BGs. In Section 3, we construct the framework of BGs with uncertainty, both from
an intuitive semantic and a compact syntactic point of view. Moreover, we show that
the proposed semantic and syntactic definitions are equivalent, and we characterise the
complexity of the associated decision problems.

2 Preliminaries

In this section, we recall possibilistic logic and Boolean games. As usual, the logical
language L

�

associated with a finite set of atomic propositional variables (atoms) �
contains the following formulas:

– every propositional variable of �,
– the logical constants ? and >, and
– the formulas ¬', '!  , '$  , ' ^  and ' _  for every ',  2 L

�

.

An interpretation of � is defined as a subset ! of �, with the convention that all atoms
in ! are interpreted as true (>) and all atoms in � \ ! are interpreted as false (?). An
interpretation can be extended to L

�

in the usual way. If a formula ' 2 L
�

is true in an
interpretation !, we denote this as ! |= '.

2.1 Possibilistic Logic

Possibilistic logic (see e.g. [9] for a more comprehensive overview) is a popular tool to
encode and reason about uncertain information in an intuitive and compact way.

Definition 1 (Possibility Distribution). Let ⌦ be a finite universe. A possibility distri-

bution on ⌦ is a mapping ⇡ : ⌦ ! [0, 1].

In possibilistic logic, given a logical language L
�

, the set of interpretations of � is
used as the universe of a possibility distribution. If ⇡(!) = 1, ! is considered to be
completely possible, whereas ⇡(!) = 0 corresponds to ! being completely impossible.
Available information encodes which worlds cannot be excluded based on available
knowledge. Therefore, smaller possibility degrees are more specific, as they rule out
more possible worlds. A possibility distribution such that ⇡(!) = 1 for every ! 2 ⌦



thus corresponds to a state of complete ignorance. Note that a possibility distribution is
not the same as a probability distribution, since we do not require that

P
!2⌦

⇡(!) = 1.
An ordering  on all possibility distributions on ⌦ can be defined as ⇡1  ⇡2 iff it holds
that ⇡1(!)  ⇡2(!), 8! 2 ⌦, assuming the natural ordering on [0, 1]. We say that ⇡1

is at least as specific as ⇡2 when ⇡1  ⇡2. The maximal elements w.r.t.  are called the
least specific possibility distributions. A possibility and necessity measure are induced
by a possibility distribution in the following way.

Definition 2 (Possibility and Necessity Measure). Given a possibility distribution ⇡
in a universe ⌦, the possibility ⇧(A) and necessity N(A) that an event A ✓ ⌦ occurs

is defined as:

⇧(A) = sup

!2A

⇡(!); N(A) = inf

!/2A

(1� ⇡(!))

In possibilistic logic, we abbreviate N({! 2 ⌦ |! |= '}) as N(') for a formula '.

Definition 3 (Possibilistic Knowledge Base). Let � be a set of atoms. A finite set

{('1,↵1), . . . , ('m

,↵
m

)} of pairs of the form ('
i

,↵
i

), with '
i

2 L
�

and ↵
i

2 ]0, 1],
is a possibilistic knowledge base (KB). It encodes a possibility distribution, namely the

least specific possibility distribution satisfying the constraints N('
i

) � ↵
i

.

The possibility distribution ⇡K encoded by a KB K is well-defined because there is a
unique least specific possibility distribution which satisfies the constraints of K [7].

The necessity measure N satisfies the property N(p^ q) = min(N(p), N(q)). The
following inference rules are associated with possibilistic logic:

– (¬p _ q,↵); (p _ r,�) ` (q _ r,min(↵,�)) (resolution rule),
– if p entails q classically, then (p,↵) ` (q,↵) (formula weakening),
– for �  ↵, (p,↵) ` (p,�) (weight weakening),
– (p,↵); (p,�) ` (p,max(↵,�)) (weight fusion).

The axioms consist of all propositional axioms with weight 1. These inference rules
and axioms are sound and complete in the following sense [7]: it holds that K ` (',↵)
iff N(') � ↵ for the necessity measure N induced by ⇡K. Another useful property is
K ` (',↵) iff K

↵

` ' (in the classical sense) [9], with K
↵

= {' | (',�) 2 K,� � ↵}
the ↵-cut of K.

2.2 Boolean Games

We use a generalization of the notion of Boolean games [5] by allowing agents to have
non-dichotomous utilities. This approach is a variant of the BGs with prioritized goal
bases considered in [4]. Our notation is based on [2].

Definition 4 (Boolean Game [4]). A Boolean game (BG) is a tuple G = (�1, . . . ,�n

,
�1, . . . ,�n

). The set of agents {1, . . . , n} is denoted as N . For every i 2 N , �
i

is

a finite set of propositional variables, disjoint with �
j

, 8j 6= i. We denote � =

S
i2N

�
i

.

For every i 2 N , �
i

= {�1
i

; . . . ; �p

i

} is i’s prioritized goal base. The formula �j

i

2 L
�

is agent i’s goal of priority j. We assume that the number of priority levels p is fixed for

all agents.



The set � contains all action variables. Agent i can set the variables under its control,
i.e. those in �

i

, to true or false. Note that every variable is controlled by exactly one
agent. By convention, priority numbers are ordered from high priority (level 1) to low
priority (level p). Definition 4 corresponds to a particular case of generalized BGs [4], in
which the preference relation is total for every agent. The results presented in this paper
can easily be generalized to accommodate for partially ordered preference relations.
However, as modeling preferences is not the focus of this paper, we prefer the simpler
setting of Definition 4, for clarity.

Definition 5 (Strategy Profile [2]). For each agent i 2 N , an interpretation of �
i

is

called a strategy of i. An n-tuple ⌫ = (⌫1, . . . , ⌫n), with ⌫
i

a strategy of agent i, is

called a strategy profile or outcome of G.

Because {�1, . . . ,�n

} is a partition of � and ⌫
i

✓ �
i

, 8i 2 N , we also (ab)use the
set notation

S
i2N

⌫
i

✓ � for a strategy profile ⌫ = (⌫1, . . . , ⌫n). We denote the set
of all strategy profiles as V . With ⌫�i

we denote the projection of the strategy profile
⌫ = (⌫1, . . . , ⌫n) on ��i

= � \ �
i

, i.e. ⌫�i

= (⌫1, . . . , ⌫i�1, ⌫i+1, . . . , ⌫n). If ⌫0
i

is
a strategy of agent i, then (⌫�i

, ⌫0
i

) is a shorthand for (⌫1, . . . , ⌫i�1, ⌫0
i

, ⌫
i+1, . . . , ⌫n).

The utility for every agent i follows naturally from the satisfaction of its goals.

Definition 6 (Utility Function). For each i 2 N and ⌫ 2 V , the utility for ⌫ is defined

as u
i

(⌫) = p+ 1�min{k | 1  k  p,⌫ |= �k

i

}, with min ; = p+ 1 by convention.

Note that the specific utility values do not matter since the solution concepts that we will
discuss in this paper are qualitative; only the preference ordering �

i

on V induced by
the utility function u

i

is relevant: ⌫ �
i

⌫ 0 iff u
i

(⌫) � u
i

(⌫ 0
), 8⌫,⌫ 0 2 V . A common

qualitative solution concept in game theory is the notion of pure Nash equilibrium.

Definition 7 (Pure Nash Equilibrium). A strategy profile ⌫ = (⌫1, . . . , ⌫n) for a

BG G is a pure Nash equilibrium (PNE) iff for every agent i 2 N , ⌫
i

is a best response

(BR) to ⌫�i

, i.e. u
i

(⌫) � u
i

(⌫�i

, ⌫0
i

), 8⌫0
i

✓ �
i

.

Example 1 (continued). Recall the scenario of Example 1. Alice and Bob’s goal bases
can be written as �1 = {a $ b;¬a} and �2 = {a $ b; b}. This encoding naturally
captures the fact that e.g. Bob’s first priority is to go out with Alice and his second
priority is to attend a sports game. Both agents have utility 2 in the PNEs {a, b} and ;.

3 Boolean Games with Incomplete Information

3.1 Semantic Approach

Consider a set of agents N , controlling the action variables in �1, . . . ,�n

, who are
uncertain about each other’s goals. Let us denote the set of possible goal bases with
p levels as G = {{�1

; . . . ; �p} | 8k 2 {1, . . . , p} : �k 2 L
�

in conjunctive nor-
mal form and (k 6= p ) �k |= �k+1

)}. Note that any formula can be transformed
into an equivalent formula in conjunctive normal form (CNF) and that any goal base
{�1

; . . . ; �p} violating the condition �k |= �k+1, 8k 6= p can be transformed into a
semantically equivalent goal base which does satisfy the property, namely {�1

; �1 _



�2; . . . ;
! p

m =1 �m } . Moreover, all agents have the same set of possible goal bases. Let
us define BG(�1, . . . ,�n ) = { (�1, . . . ,�n , �1, . . . ,�n ) | �1, . . . ,�n ! G} as the
set of all possible BGs, given the considered partition of action variables. When the
partition �1, . . . ,�n is clear from the context, we abbreviate BG(�1, . . . ,�n ) as BG.
The knowledge of an agent i about the goals of the other agents can be captured by a
possibility distribution ⇡i over BG, encoding i’s beliefs about what is the actual game
being played.
Example 2. Recall the scenario of Example 1. Suppose Bob has perfect knowledge of
Alice’s preferences, then ⇡2 : BG " { 0, 1} maps every BG to 0, except the BGs with
the preference orderings of Example 1, i.e. the actual game being played is the only one
considered possible by Bob. Suppose Alice is certain that Bob wants to attend a sports
game together, or attend the game on his own if attending it together is not possible.
Then ⇡1 : BG " { 0, 1} maps all BGs to 0, except those with the preference orderings

{ a, b} = 1 # >1 { b} >1 { a}
{ a, b} >2 { b} >2 # = 2 { a}

Bob \ Alice a Âa
b (2, 2) (1, 1)

Âb (0, 0) (0, 2)

Our first aim is to determine to which degree a specific strategy profile ⌫ is neces-
sarily/possibly a PNE according to agent i. Intuitively, it is possible to degree � that a
strategy profile ⌫ is a PNE according to i iff there exists a BG G ! BG such that ⌫ is a
PNE in G and such that i considers it possible to degree � that G is the real game being
played, i.e.

⇧i ({G ! BG | ⌫ is a PNE in G} ) = �

Similarly, it is certain to degree � that a strategy profile ⌫ is a PNE according to i iff
for every G ! BG such that ⌫ is no PNE, it holds that i considers it possible to degree
at most 1 $ � that G is the real game being played, i.e.

Ni ({G ! BG | ⌫ is a PNE in G} ) = �

Using the previously introduced degrees, we can define measures which offer a way
to distinguish between multiple equilibria, motivated by Schellings’ notion of focal
points [15]. An equilibrium is a focal point if, for some reason other than its utility,
it stands out from the other equilibria. In our case, the reason can be that agents have
a higher certainty that the outcome is actually a PNE, using the degrees to which a
strategy profile is necessarily a PNE. Note that there might not exist an outcome which
every agent believes is necessarily a PNE, even when the (unknown) game being played
has one or more PNEs. In such cases, the degree to which various strategy profiles are
possibly a PNE could be used to guide decisions.
Definition 8. Given the possibility measures ⇧i for every i, the degree to which all

agents find it possible that the strategy profile ⌫ is a PNE is

poss(⌫) = min
i2N

⇧i ({G ! BG | ⌫ is a PNE in G} )

Similarly, given the necessity measures Ni for every i, the degree to which all agents

find it necessary that ⌫ is a PNE is defined as

nec(⌫) = min
i2N

Ni ({G ! BG | ⌫ is a PNE in G} )



3.2 Syntactic Approach

While the concepts from Section 3.1 define useful notions w.r.t. the possibility or ne-
cessity that agents play best responses or that strategy profiles are PNEs, they cannot be
applied in practice, since the number of BGs in BG is exponential. In this section, we
present a syntactic counterpart which will allow for a more compact representation of
the agents knowledge about the game being played.

Definition 9 (Goal-Knowledge Base). AgentiÕs knowledge about the goals of agentj
is encoded in a goal knowledge baseKj

i of i w.r.t. j containing formulas of the form
(! ! gk

j , " ), (! " gk
j , " ) or (! # gk

j , " ), where1 $ k $ p, ! %L ! , " %]0, 1] and
gk

j a new atom, encodingj Õs goal of priorityk. A goal-KBKj
i is goal-consistent, i.e.

for every!, # %L ! such that(! ! gk
j , " ) % Kj

i and(# " gk
j , " ) % Kj

i , it holds that
! |= # classically. Moreover,K j

i contains{ (gk
j ! gk+1

j , 1) | 1 $ k $ p & 1} .

A goal-KB Kj
i captures the knowledge of agent i about the goal base of agent j . In our

examples, the formulas { (gk
j ! gk+1

j , 1) | 1 $ k $ p & 1} , which belong to Kj
i by

definition, are not explicitly mentioned. These formulas express that, if agent j ’s utility
is at least p + 1 & k, it is at least p & k. Furthermore, the information that we like to
express in Kj

i exists of necessary and/or sufficient conditions for the utility of agent j .
For instance, agent i might believe that with certainty " , ! is a sufficient condition for
satisfying the goal with priority k, i.e. achieving a utility of at least p + 1 & k. This is
encoded as (! ! gk

j , " ) % Kj
i . Similarly, agent i might believe with certainty " that !

is a necessary condition for achieving the goal with priority k, i.e. (! " gk
j , " ) % Kj

i .
These types can be combined as (! # gk

j , " ) % Kj
i . Note how adding the atoms gk

j to
the language allows us to explicitly encode what an agent knows about the goal of an-
other agent. This is inspired by the approach from [16] for merging conflicting sources,
where similarly additional atoms are introduced to encode knowledge about the un-
known meaning of vague properties, in the form of necessary and sufficient conditions.

Example 4.Recall the scenario of Example 1. Suppose Bob has a good idea of what
Alice’s goal base looks like: K1

2 = { ((a # b) # g1
1, 0.9), ((( a # b) ' Â a) #

g2
1, 0.6)} . He is very certain that Alice’s first priority is to go out together and rather

certain that she prefers the theatre in case they do not go out together. Although Alice
is very certain that Bob will be pleased if they attend a sports game together, she is
only a little certain whether Bob would be just as pleased if they attend the cultural
event together. She knows Bob prefers to go a sports game as a second priority. Her
knowledge of Bob’s goal base can be captured by K2

1 = { ((a ( b) ! g1
2, 0.8), ((Âa (

Âb) ! g1
2, 0.3), (b ! g2

2, 1)} .

It is natural to assume that Ki
i = { (gk

i #
! k

m =1 $m
i , 1) | k % {1, . . . , p}} , i.e. every

agent knows its own goal base and the corresponding utility. However, this assumption
is not necessary for the results in this paper. By requiring goal-consistency, we ensure
that the knowledge base Kj

i only encodes beliefs about the goal of agent j . Without
this assumption, it could be possible to derive from Kj

i formulas of the form ! ! # ,
encoding dependencies between the action variables of other agents. Such dependencies



could be useful for modeling suspected collusion, which we will not consider in this
paper. However, we do not demand that the beliefs of an agent are correct, i.e. we do
not assume that each agent considers the actual game possible.

DeÞnition 10 (BG with Incomplete Information). A Boolean game with incomplete
information (BGI) is a tupleG = ( ! 1, . . . , ! n , " 1, . . . , " n , K1, . . . , Kn ) with ! 1, . . . ,
! n , " 1, . . . , " n as before andKi = {K 1

i , . . . , Kn
i } , whereKj

i is a goal-KB ofi w.r.t. j .

Let us now consider how to compute the necessity and possibility that agentj plays
a best response (BR) in the strategy proÞle! according to agenti . First note that each
! ! V corresponds unambiguously to a formula#! in L ! in the following way:

#! =
!

{ p | p ! ! } "
!

{Â p| p ! ! \ ! }

We also introduce the following notations:

#! ! j =
!

{ p | p ! ! # (! \ ! j )} "
!

{Â p| p ! (! \ ! j ) \ ! }

#" j =
!

{ p | p ! $j # ! j } "
!

{Â p| p ! ! j \ $j }

Note that#! ! j is equivalent with
"

{ #(! ! j ," "
j ) | $!

j $ ! j } .
Agentj plays a BR in the strategy proÞle! iff for every alternative strategy$!

j $ ! j

it holds thatuj (! ) % uj (! " j , $!
j ). Essentially this boils down to the fact that, for

somek ! { 0, . . . , p} , uj (! ) % k and&$!
j $ ! j : uj (! " j , $!

j ) ' k. Note that for
k = 0 , the Þrst condition is always fulÞlled. Similarly, fork = p, the second condition
becomes trivial. Similarly, agentj plays no BR in! iff there exists a$!

j $ ! j such
that uj (! ) < u j (! " j , $!

j ). This means that, for allk ! { 0, . . . , p} , uj (! ) < k or
( $!

j $ ! j : uj (! " j , $!
j ) > k . The possibility of agentj playing a BR is dual to the

necessity of agentj playing no BR. These insights motivate the following deÞnition.

DeÞnition 11. Let i, j ! N be two agents in a BGIG and let! be a strategy proÞle of
G. We denotegp+1

j = ) andg0
j = * for everyj . We say thatj plays a BR in! with

necessity%according toi , written BRn
i (j, ! ) = %, iff %is the greatest value in[0, 1]

for which there exists somek ! { 0, . . . , p} such that the following two conditions are
satisÞed:

1. K j
i + (#! , gk+1

j , %)

2. K j
i + ((# ! ! j " Â #" j ) , Â gk

j , %)

Let %# be the smallest value greater than1 - %which occurs inK j
i . Agenti believes

it is possible to degree%that agentj plays a BR in! , written BRp
i (j, ! ) = %, iff %

is the greatest value in]0, 1] for which there exists somek ! { 0, . . . , p} such that the
following two conditions are satisÞed:

1. K j
i ! (# ! , Â gk+1

j , %#)

2. &$!
j $ ! j : K j

i ! (#( ! ! j ," "
j ) , gk

j , %#)

If no such%exists, then BRpi (j, ! ) = 0 .



Importantly, the syntax in DeÞnition 11 allows to express the certainty or possibililty
that an agent plays a BR, from the point of view of another agent. This forms an im-
portant base from which to deÞne interesting solution concepts or measures in BGIs. In
this paper, we introduce the following measures that respectively reßect to what degree
all agents believe it is necessary and possible that! is a PNE.

DeÞnition 12. Let G be a BGI. For every strategy proÞle! , we deÞne the measures
PNEn and PNEp as:

PNEn (! ) = min
i ! N

min
j ! N

BRn
i (j, ! ), PNEp(! ) = min

i ! N
min
j ! N

BRp
i (j, ! )

If we assume that all agents know their own goal, then BRn
i (i, ! ) = BRp

i (i, ! ) = 0 if !
is not a PNE. Consequently, if! is not a PNE, then we havePNEn (! ) = PNEp(! ) = 0 .
Note that the measures from DeÞnition 12 induce a total ordering onV, so there always
exists a! ! V such thatPNEn or PNEp is maximal.

Example 4 (continued).Let G be the BGI with the aformentioned goal-KBs and as-
sume that Bob and Alice know their own goals. It can be computed that

" { a} { b} { a, b}

minj ! N BRn
1 (j, . ) 0.3 0 0 0.8

minj ! N BRn
2 (j, . ) 0.9 0 0 0.9

PNEn (.) 0.3 0 0 0.8

The strategy proÞle{ a, b} has the highest value forPNEn . Note that if Bob had the
ÔdualÕ beliefs of Alice, i.e.K1

2 = { ((Âa # Âb) $ g1
1, 0.8), ((a # b) $ g1

1, 0.3), (Âa $
g2

1, 1)} , then" and{ a, b} both had value0.3 for PNEn .

In [6], we showed that many solution concepts for BGs can be found by using a reduc-
tion to answer set programming. The concepts in this section, such asPNEn , can be
computed using a a straightforward generalization of the idea in [6].

3.3 Soundness and Completeness

In this section, we show that the solution concepts for BGIs that were introduced in Sec-
tion 3.2 indeed correspond to their semantic counterparts from Section 3.1. The classical
theory{ ! k

j % gk
j | k ! { 1, . . . , p}} associated with the goal base" j = { ! 1

j ; . . . ; ! p
j } !

G is denoted asTj . A possibility distribution#j
i on G can be associated withK j

i in the
following natural way, inspired by [3], withmax " = 0 :

#j
i (" j ) = 1 & max{ $l | (%l , $l ) ! K j

i , Tj '|= %l } (1)

Intuitively, the higher the certainty of the formulas violated by" j , the lower the pos-
sibility of " j being the real goal base of agentj according to agenti . Note that if we
make the reasonable assumption that an agent knows its own goals, then#i

i maps all
elements ofG to 0 except the real goal base ofi , which is mapped to1. Given the BGI
G and using the possibility distributions onG for everyj , we can deÞne a possibility
distribution#G

i on the set of possible BGsBG:

#G
i (G") = min

j ! N
#j

i (" G!

j )



with ! G!

j the goal base of agentj in the BG G!. This possibility distribution is the
natural semantic counterpart of the BGIG. We now show that these possibility distri-
butions" G

i allow us to interpret the solution concepts that have been deÞned syntac-
tically in Section 3.2 as instances of the semantically deÞned solution concepts from
Section 3.1. This is formalized in the following proposition and corollary. We use the
notation brj (! , ! j ) for the propositional variable corresponding to Òagentj with goal
base! j plays a best response in! Ó.

Proposition 1. For every! ! V , i, j ! N and# ! ]0, 1], it holds that

BRn
i (j, ! ) " # # $ ! j ! G : Âbrj (! , ! j ) % " j

i (! j ) & 1 ' # (2)

BRp
i (j, ! ) " # # ( ! j ! G : brj (! , ! j ) ) " j

i (! j ) " # (3)

Corollary 1. Let us denote the possibility and necessity measure associated with" G
i

as$ G
i andN G

i . For every! ! V it holds that

N G
i ({ G! ! BG | ! is a PNE inG!} ) = min

j " N
BRn

i (j, ! ) (4)

$ G
i ({ G! ! BG | ! is a PNE inG!} ) = min

j " N
BRp

i (j, ! ) (5)

Consequently, it holds that:

necG ({ G! ! BG | ! is a PNE inG!} ) = PNEn (! )

possG ({ G! ! BG | ! is a PNE inG!} ) = PNEp(! )

Before we prove Proposition 1 and Corollary 1, a lemma is stated which deals with the
construction of speciÞc goal bases inG, given the knowledge about these goal bases.

Lemma 1. Given a goal-KBKj
i , there exists a goal base! j ! G such that" j

i (! j ) = 1 .

Proof (Sketch).It is easily veriÞed that the goal base! j = ( %1
j ; . . . ; %p

j ) with %k
j the

CNF of
!

{ & | & ! L ! , ( # > 0 : K j
i * (& + gk

j , #)} meets the condition" j
i (! j ) = 1 .

Note that the construction of! j relies on the (constraint) syntax of the formulas inK j
i .

We now prove Proposition 1.
% of (2) We prove this by contraposition. Suppose there exists a! j ! G such that

j plays no BR in! given ! j and" j
i (! j ) > 1 ' #. Taking (1) into account, the latter

implies that$(&l , ' l ) ! K j
i : Tj ,|= &l % ' l < # . By deÞnition 11, BRni (j, ! ) "

# implies that there exists ak! ! { 0, . . . , p} such thatK j
i * (&! + gk ! +1

j , #) and

Kj
i * ((&! " j ) Â &" j ) + Â gk !

j , #). It follows that Tj |= &! + gk ! +1
j and Tj |=

(&! " j ) Â &" j ) + Â gk !

j . Consequently, by deÞnition ofTj , if k! ! { 1, . . . , p ' 1} , it

holds thatTj |= &! + %k ! +1
j andTj |= ( &! " j ) Â &" j ) + Â %k !

j . This means that

j does play a BR in! since the goal%k ! +1
j is satisÞed in! and for every alternative

strategy ofj , %k !

j is not satisÞed. Ifk! = p or k! = 0 thenj Õs utility is resp.0 or p for
every alternative strategy ofj . In any case, agentj with goal base! j plays a BR in! .
- of (2) Suppose that BRni (j, ! ) < # , i.e. for everyk ! { 0, . . . , p} either K j

i !

(&! + gk+1
j , #) or K j

i ! ((&! " j ) Â &" j ) + Â gk
j , #). Let k! be the greatest index for



which Kj
i ! (! ! ! gk !

j , " ). Note thatk! " 1 sinceg0
j = # . Construct a goal base

#j = ( $1
j ; . . . ; $p

j ) with $k
j deÞned as the CNF of the formula

!
{ ! | ! $ L ! , K j

i %(! ! gk
j , " )} & (

"
{ ! | ! $ L ! , K j

i %(! ' gk
j , " )} ( Â ! ! )

for k ) k!, and$k
j deÞned as the CNF of the formula

!
{ ! | ! $ L ! , K j

i %(! ! gk
j , " )} & (

"
{ ! | ! $ L ! , ! *= + , K j

i %(! ' gk
j , " )} )

for k > k !. One can straightforwardly check that#j $ G and%j
i (#j ) > 1 , " by

checking that for every formula(!, & ) $ K j
i with & " " , it holds thatTj |= ! .

Moreover, one can verify thatj does not play a BR in! with the constructed#j (note
that this would not be guaranteed by the goal base constructed in the proof of Lemma 1).
- of (3) Analogous to the proof of Ò. of (2)Ó.

. of (3) We prove directly that BRpi (j, ! ) " " , i.e. / k $ { 0, . . . , p} such thatK j
i !

(! ! ! Â gk+1
j , " " ) and 0' !

j : K j
i ! (! ( ! " j ," !

j ) ! gk
j , " " ). By assumption, there

exists a#j such thatj plays a BR in! and%j
i (#j ) " " . The former means that for

somek! $ { 0, . . . , p} , Tj |= ! ! ! $j
k ! +1 and0' !

j : Tj |= ! ( ! " j ," !
j ) ! Â $j

k ! . Since

Tj |= $j
l 1 gl

j , it then holds thatTj |= ! ! ! gk ! +1
j . Since by deÞnition! ! *|= # ,

Tj *|= # andTj *|= Â! ! , it follows that Tj *|= ! ! ! Â gk ! +1
j . The assumption that

%j
i (#j ) " " implies that0(! l , &l ) $ K j

i : Tj *|= ! l - &l ) 1 , " . It follows thatK j
i !

(! ! ! Â gk ! +1
j , " " ). Analogously, we can prove that0' !

j : Tj |= ! ( ! " j ," !
j ) ! Â $j

k !

implies that0' !
j : K j

i ! (! ( ! " j ," !
j ) ! gk !

j , " " ).
We now prove (4) of Corollary 1. The proof of (5) is analogous and the rest of

Corollary 1 follows immediately.
Proof of (4) By deÞnition,minj # N BRn

i (j, ! ) " " iff BRn
i (j, ! ) " " for everyj $

N . We proved that the latter is equivalent with0#j $ G : j no BR in! - %j
i (#j ) ) 1,

" . We Þrst prove that this implies that for allG! $ BG it holds that%G
i (G!) ) 1, " if !

is no PNE inG!. By deÞnition, this means thatN G
i ({ G! $ BG |! is a PNE inG!} ) " " .

Take an arbitraryG! such that! is no PNE inG!. Then there exists somej who plays
no BR in! if its goal base is# G!

j . By assumption, this implies%j
i (# G!

j ) ) 1, " , which
implies%G

i (G!) ) 1 , " by deÞnition. We now prove the opposite direction. Take an
arbitrary j and#j such thatj plays no BR in! with the goal base ofj equal to#j .
Using Lemma 1, we can construct aG! $ BG such that# G!

j = #j and%i
j ! (# G!

j ! ) = 1
for everyj ! *= j . Obviously! is no PNE inG! sincej plays no BR. By assumption and
deÞnition ofN G

i , it holds that%G
i (G!) ) 1 , " . Since%i

j ! (# j !

G ! ) = 1 for everyj ! *= j ,

it follows that%j
i (#j ) ) 1 , " . Due to Proposition 1, we proved that BRn

i (j, ! ) " " .
Sincej is arbitrary, it follows thatminj # N BRn

i (j, ! ) " " .

Example 5.Recall the scenario of Example 2. We deÞne the BGIG. Since Bob has
perfect knowledge of AliceÕs preferences, his goal-KB can be modeled asK1

2 = K1
1 =

{ ((a 1 b) 1 g1
1, 1), ((( a 1 b) & Âa) 1 g2

1, 1)} . Alice is certain that Bob wants to
attend a sports game together, or attend the game on his own if attending it together is
not possible. This can be captured by the goal-KBK2

1 = { ((a ( b) 1 g1
2, 1), (b 1

g2
2, 1)} . It is easy to see that%G

1 and %G
2 correspond to the possibility distributions



! 1 and ! 2 described in Example 2. Despite AliceÕs incorrect beliefs, Bob and Alice
are both certain that attending a sports game together is a PNE, sincenecG ({ G! !
BG | {a, b} is a PNE inG!} ) = PNEn ({ a, b} ) = 1 . Contrary to Alice, Bob knows that
going to the theatre together is a PNE as well.

An interesting question is how the agentsÕ beliefs can inßuence the proposals they
can make in e.g. bargaining protocols. Suppose for instance that Alice wants to make
Bob a suggestion, then based on her beliefs, it would be rational to suggest to attend
a sports game together. Bob would then rationally agree, based on his beliefs. How-
ever, if Bob were to make a proposal, he can choose between two rational suggestions:
attending a sports game together or going to the theatre together. If he would do the lat-
ter, Alice would know that her beliefs are incorrect, assuming Bob behaves rationally.
In future research, we will investigate these strategical interactions and how they al-
low agents to revise their beliefs. Other research possibilities lie in manipulating BGIs
through communication, for instance through announcements, as investigated for BGs
with environment variables [11]. Another option is to extend the BGI framework, al-
lowing agents to also reason about the beliefs of other agents, although this is likely to
lead to an increase in computational complexity.

4 Decision problems

The decision problems associated with BGIs and thePNEx measures are investigated.

Proposition 2. Let G be a BGI and" ! ]0, 1]. The following decision problems are
# P

2 -complete:

1. Does there exist a strategy proÞle! with PNEn (! ) " " ?
2. Does there exist a strategy proÞle! with PNEp(! ) " " ?

Proof. Hardness of 1 and 2Both problems are# P
2 -hard since they contain the# P

2 -
complete problem to decide whether a BG has a PNE as a special case. Indeed, when
G is a BG, we can construct a BGI in which all agents have complete knowledge of
each others goals. ThenPNEn (! ) and PNEp(! ) coincide and take values in{ 0, 1} ,
depending on whether! is a PNE or not. Consequently,G has a PNE iff there exists a
! with PNEn (! ) = PNEp(! ) " " .
Completeness of 1We can decide the problem by Þrst guessing a strategy proÞle! .

Checking whetherPNEn (! ) " " means checking whether BRn
i (j, ! ) " " for every

i, j ! N . The latter involves checking possibilistic entailments, which can be done in
constant time using anNP-oracle. Therefore, the decision problem is# P

2 -complete.
Completeness of 2We can decide the problem by Þrst guessing a strategy proÞle! .

Checking whetherPNEp(! ) " " means checking whether BRp
i (j, ! ) " " for ev-

ery i, j ! N . To see that the latter can be reduced to checking a polynomial number
of possibilistic entailments, we need to rewrite the condition that#$!

j $ %j : K j
i !

(&(! ! j ,! "
j ) % gk

j , " " ). To this end, we deÞneKk , for everyk ! { 1, . . . , p} , as the

KB Kj
i in which all formulas deÞning necessary and/or sufÞcient conditions forgk

j are



preserved; all formulas with necessary conditions forgl
j (l ! k) are translated into nec-

essary conditions forgk
j by replacing(! " gl

j , " ) by (! " gk
j , " ); all formulas with

sufÞcient conditions forgl
j (l # k) are translated into sufÞcient conditions forgk

j by
replacing(! $ gl

j , " ) by (! $ gk
j , " ); all other formulas are deleted. Then it holds

%#!
j & $ j : K j

i ! (! ( ! ! j ,! "
j ) " gk

j , %" )

' % #!
j & $ j : Kk ! (! ( ! ! j ,! "

j ) " gk
j , %" )

' % #!
j & $ j : Kk

1# " ! ! ( ! ! j ,! "
j ) " gk

j

' % #!
j & $ j : Kk

1# " and! ( ! ! j ,! "
j ) andÂgk

j are consistent

' % #!
j & $ j : K !k

1# " and! ! "
j

are consistent

whereK!k
1# " is obtaind fromKk

1# " by replacing each occurrence ofgk by ( and each
occurrence ofp ) $ \ $ j by its truth value (* or ( ) in ! . The last condition is equivalent
with K!k

1# " being a tautology, which can be checked with a SAT-solver, i.e. in constant
time with anNP-oracle.

The result of Proposition 2 shows that the complexity for the introduced measures does
not increase compared to PNEs of BGs, since deciding whether a BG has a PNE is also
& P

2 -complete. Moreover, given the experimental results reported in [6] for standard
BGs, it seems plausible that a reduction to answer set programming would support an
efÞcient computation of solutions for medium sized games.

5 Conclusion

We introduced the Þrst BG framework that allows agents to be uncertain about the other
agentsÕ goals. We have argued that such a scenario can naturally be modeled by associ-
ating with each agent a possibility distribution over the universe of all possible games
(given the considered partition of action variables). While this allows us to deÞne a
variety of solution concepts in a natural way, this semantic approach is not useful in
practice, due to the exponential size of these possibility distributions. Therefore, we
also proposed a syntactic counterpart, which avoids exponential representations by re-
lying on standard possibilistic logic inference, and can be implemented by reduction
to answer set programming. Our main result is that this syntactic characterization in-
deed corresponds to the intended semantic deÞnitions. We furthermore showed that the
computational complexity of reasoning with our Boolean games with incomplete infor-
mation remains at the second level of the polynomial hierarchy. The present framework
leads to several interesting avenues for future work. First, the approach could be gener-
alized for taking into account prior beliefs about the likely behaviour of other players
(e.g. for modeling collusion) and/or for modeling situations where agents may be un-
certain about the actions that are being played by other agents. Moreover, it seems of
interest to analyse the effect of adding communication to the framework, by allowing
agents to strategically ask questions or make proposals to each other in order to reduce
uncertainty or as part of a bargaining process.
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